0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load430(x1, x2, x3) → Load430(x2, x3)
Cond_Load430(x1, x2, x3, x4) → Cond_Load430(x1, x3, x4)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i37[0] →* i37[1])∧(i12[0] →* i12[1])∧(i37[0] > 2 && i12[0] >= 0 && i12[0] > i37[0] && i12[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i12[1] + 1 →* i12[0])∧(2 * i37[1] →* i37[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i37[0] →* i37[1])∧(i12[0] →* i12[1])∧(i37[0] > 2 && i12[0] >= 0 && i12[0] > i37[0] && i12[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i12[1] + 1 →* i12[0])∧(2 * i37[1] →* i37[0]))
(1) (i37[0]=i37[1]∧i12[0]=i12[1]∧&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0))=TRUE ⇒ LOAD430(i12[0], i37[0])≥NonInfC∧LOAD430(i12[0], i37[0])≥COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])∧(UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥))
(2) (>(+(i12[0], 1), 0)=TRUE∧>(i12[0], i37[0])=TRUE∧>(i37[0], 2)=TRUE∧>=(i12[0], 0)=TRUE ⇒ LOAD430(i12[0], i37[0])≥NonInfC∧LOAD430(i12[0], i37[0])≥COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])∧(UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥))
(3) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i37[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(4) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i37[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(5) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i37[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(6) ([1] + i37[0] + i12[0] ≥ 0∧i12[0] ≥ 0∧i37[0] + [-3] ≥ 0∧[1] + i37[0] + i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(7) ([4] + i37[0] + i12[0] ≥ 0∧i12[0] ≥ 0∧i37[0] ≥ 0∧[4] + i37[0] + i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(8) (i37[0]=i37[1]∧i12[0]=i12[1]∧&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0))=TRUE∧+(i12[1], 1)=i12[0]1∧*(2, i37[1])=i37[0]1 ⇒ COND_LOAD430(TRUE, i12[1], i37[1])≥NonInfC∧COND_LOAD430(TRUE, i12[1], i37[1])≥LOAD430(+(i12[1], 1), *(2, i37[1]))∧(UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥))
(9) (>(+(i12[0], 1), 0)=TRUE∧>(i12[0], i37[0])=TRUE∧>(i37[0], 2)=TRUE∧>=(i12[0], 0)=TRUE ⇒ COND_LOAD430(TRUE, i12[0], i37[0])≥NonInfC∧COND_LOAD430(TRUE, i12[0], i37[0])≥LOAD430(+(i12[0], 1), *(2, i37[0]))∧(UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥))
(10) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i37[0] + [bni_15]i12[0] ≥ 0∧[-1 + (-1)bso_16] + i37[0] ≥ 0)
(11) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i37[0] + [bni_15]i12[0] ≥ 0∧[-1 + (-1)bso_16] + i37[0] ≥ 0)
(12) (i12[0] ≥ 0∧i12[0] + [-1] + [-1]i37[0] ≥ 0∧i37[0] + [-3] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i37[0] + [bni_15]i12[0] ≥ 0∧[-1 + (-1)bso_16] + i37[0] ≥ 0)
(13) ([1] + i37[0] + i12[0] ≥ 0∧i12[0] ≥ 0∧i37[0] + [-3] ≥ 0∧[1] + i37[0] + i12[0] ≥ 0 ⇒ (UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥)∧[(-1)Bound*bni_15] + [bni_15]i12[0] ≥ 0∧[-1 + (-1)bso_16] + i37[0] ≥ 0)
(14) ([4] + i37[0] + i12[0] ≥ 0∧i12[0] ≥ 0∧i37[0] ≥ 0∧[4] + i37[0] + i12[0] ≥ 0 ⇒ (UIncreasing(LOAD430(+(i12[1], 1), *(2, i37[1]))), ≥)∧[(-1)Bound*bni_15] + [bni_15]i12[0] ≥ 0∧[2 + (-1)bso_16] + i37[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD430(x1, x2)) = [-1] + [-1]x2 + x1
POL(COND_LOAD430(x1, x2, x3)) = [-1] + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(2) = [2]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(*(x1, x2)) = x1·x2
COND_LOAD430(TRUE, i12[1], i37[1]) → LOAD430(+(i12[1], 1), *(2, i37[1]))
LOAD430(i12[0], i37[0]) → COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])
COND_LOAD430(TRUE, i12[1], i37[1]) → LOAD430(+(i12[1], 1), *(2, i37[1]))
LOAD430(i12[0], i37[0]) → COND_LOAD430(&&(&&(&&(>(i37[0], 2), >=(i12[0], 0)), >(i12[0], i37[0])), >(+(i12[0], 1), 0)), i12[0], i37[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |